It is requested that the DEGREE GRADE be changed from the continuous interval [5,

10] to the qualitative grading system which contains 5 scores, A, B, C, D and E.

WE PROPOSE:

1st) That the degree be viewed as one course.

2^{nd}) To consider as a class each year and per graduation ceremony as follows:

If there are at least one hundred (100)	This limits the possibility of
graduands then they constitute the class	overestimating low average degrees and
and on the basis of them only is the	increasing the C.
percentiles rule applied	
If there are fewer than one hundred	This limits the possibility of
(100) graduands then they constitute the	overestimating low average degrees and
class once they are supplemented by	increasing the C.
their colleagues who graduated in a	
previous ceremony or ceremonies in	
succession so that we again have at least	
one hundred people in the class that is	
created. The percentiles rule is applied	
to this class	

 3^{rd}) Because the average is something continuous (non-discrete number) which belongs to the interval [5.00, 10,00], we should create 6 classes which will again distinguish the average grades into 6 scores {5,6,7,8,9,10} as follows:

[5.00, 5.49)	5
[5.50, 6.49)	6
[6.50, 7.49)	7
[7.50, 8.49)	8
[8.50, 9.49)	9
[9.50, 10.00]	10

 4^{th}) From there on, the following method of conversion is applied, based on the concept of percentiles (logic of percentiles) and is in agreement, at least approximately, with the normal distribution:

Limits of percentiles and qualitative scores:

A=90.01-100 (10%)

B =65.01-90	(25%)
C =35.01-65	(30%)
D =10.01-35	(25%)
E =0-10	(10%)

The form that determines the percentile is as follows:

$$\frac{cf_{i-1} + 0.5(f_i)}{N} x100\%$$
(4.1)

 f_i = The total occurrences of **i** score {**5,6,7,8,9,10**}

 cf_i = The total of all the grades that are less than or equal to **i** {5,6,7,8,9,10}. Therefore, especially for **i** = 5 is cf_{i-1} =0, by default.

N = the total of successful students or those who constitute a class, which we grade.

EXAMPLES

GRADE	f_i	cf_l (essentially the percentile)	$\frac{cf_{i-1} + 0.5(f_i)}{N} x100\%$	ECTS GRADING
5	25	25	15.63	D
6	19	44	43.13	С
7	17	61	65.63	В
8	10	71	82.50	В
9	7	78	93.13	Α
10	2	80	98.75	Α
Ν	80			

GRADES	f_i	cf_l	$cf_{1} + 0.5(f_{1})$	ECTS
			$\frac{g_{i-1} + 0.5(f_i)}{x_{i-1}} \times 100\%$	GRADING
			N	
5	6	6	12	D
6	5	11	34	D
7	7	18	58	С
8	4	22	80	В
9	3	25	94	А
10	0	25	100	А

Ν	25		

GRADES	f_i	cf_{l}	$\frac{cf_{i-1} + 0.5(f_i)}{N} x100\%$	ECTS GRADING
5	5	5	27.78	D
6	0	5	27.78	
7	0	5	27.78	
8	4	9	77.78	В
9	0	9	100	
10	0	9	100	
N	9			

GRADES	f_i	cf_l	$\frac{cf_{i-1} + 0.5(f_i)}{N} x100\%$	ECTS GRADING
5	5	5	50	С
6	0	5	100	
7	0	5	100	
8	0	5	100	
9	0	5	100	
10	0	5	100	
Ν	5			

THE FOLLOWING SPECIAL CASES EXIST:

- 1. **One person** (one-member academic unit) **HAS NO PERCENTILE AND** has the following stable distribution (A=10, 9 / B=8/ C=7/ D=6 / E=5)
- 4. The same grade for all examined means **C** as is can be seen in one of the above examples.

http://en.wikipedia.org/wiki/Percentile_rank

Crocker, L., & Algina, J. (1986). "Introduction to classical and modern test theory." New York: Harcourt Brace Jovanovich College Publishers.